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Abstract This work focuses on the laminar flow of a two-phase particulate suspension induced
by a suddenly accelerated infinite vertical permeable surface in the presence of fluid buoyancy,
magnetic field, heat generation or absorption, and surface suction or blowing effects. The
governing equations for this modified Stokes problem are developed based on the continuum
representation of both the fluid and the particle cloud. Appropriate dimensionless variables are
introduced. The resulting dimensionless equations are solved numerically by an accurate implicit
finite-difference method for two situations. The first case corresponds to an impulsive start of the
surface from rest while the second case corresponds to a uniformly accelerated surface. The
numerical results for these cases are illustrated graphically. Comparisons with previously
published work are performed and the results are found to be in good agreement. Typical fluid-
and particle-phase velocity and temperature distributions as well as wall shear stress and heat
transfer results are reported for various values of the particle loading, Hartmann number, wall
mass transfer coefficient and the heat generation or absorption coefficient.

Nomenclature
B0 = Magnetic field strength
c = Fluid-phase specific heat at constant

pressure
C = Fluid-phase skin-friction coefficient

(C = ± qF/qZ(t,0))
F = Dimensionless fluid-phase tangential

velocity (F = u/v0)
g = Acceleration due to gravity
G = Numerical growth factor
Gr = Grashof number (Gr = gb*n(Tw±

T?)/U3
0)

Ha = Hartmann number (Ha = B0/U0(sn/
r)1/2)

k = Stokes drag coefficient (k = 6pmr)
K = Fluid-phase thermal conductivity
m = Particle mass
n = Wall velocity exponent
N0 = Particle number density
p = Fluid-phase pressure
Pr = Fluid-phase Prandtl number (Pr =

mc/K)
qw = Wall heat transfer coefficient

Q0 = Dimensional heat generation or
absorption coefficient

r = Particle radius
rv = Dimensionless wall mass transfer (rv

= v0/U0)
t = Time
T = Dimensional fluid-phase temperature
u = Dimensional x-component (vertical)

of velocity
U0 = Surface velocity
v = Dimensional y-component (horizontal)

of velocity
v0 = Wall suction or injection velocity
x, y = Cartesian coordinates

Greek symbols
a = Inverse Stokes number (a = n/(tp U2

0))
b* = Thermal expansion coefficient
Z = Dimensionless normal distance
f = Dimensionless heat generation or

absorption coefficient (f = Q0n/
(rcU2

0))
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Introduction
This paper considers laminar flow of a viscous dusty fluid past an impulsively
moving infinite vertical surface or plate in the presence of fluid buoyancy
effects and a magnetic field applied in the horizontal direction normal to the
flow. The plate is assumed to be permeable so as to allow for possible wall
suction or injection and is considered to be electrically non-conducting. The
fluid phase is assumed to be incompressible, Newtonian, viscous, electrically
conducting and heat generating or absorbing. The particle phase is assumed to
be made up of spherical particles having uniform size and density distribution
and is considered as an electrical insulator. This flow and heat transfer
situation arises in many engineering, manufacturing and metallurgical
applications such as glass blowing, extrusion processes, continuous casting,
cooling of metallic sheets, cooling of electronic chips, crystal growing, melt
spinning and many others.

The flow of an incompressible fluid over an impulsively-started horizontal
surface which is often referred to as the Stokes or Rayleigh flow problem was
initially analyzed some time ago by Stokes (1951). Since then, different versions
of the problem with various physical effects have been investigated by
different authors. Among these are Stewartson (1951), Hall (1969) and Elliott
(1969). Soundalgekar (1977) has reported on the effects of free convection
currents on the single-phase Stokes problem when the vertical plate is
impulsively started from rest. Foote et al. (1987) have reported some exact
solutions for the Stokes problem for an elastico-viscous fluid using the Taylor
series expansion which compared with the perturbation solutions obtained in
some earlier investigations. Other related work are those of Wang (1984), who
considered liquid film flow on an unsteady stretching surface, Smith (1994),
who reported an exact solution of the unsteady Navier-Stokes equations
resulting from a stretching surface, and Chamkha (1999), who studied the
effects of magnetic field and heat generation or absorption on the unsteady
flow of a continuously stretching semi-infinite surface. Although the flow of a
two-phase particulate suspension over an infinite horizontal permeable fixed
plate has been considered extensively in the literature (see Apazidis, 1985, 1990;
Chamkha and Peddieson, 1990), little work has been reported on the problem of
two-phase flow over an impulsively-started surface. Apazidis (1985) has
considered, among other things, laminar flow of a particulate suspension in the
presence of a gravity field caused by a suddenly accelerated surface. Recently,

g = Ratio of specific heats (g = cp/c)
k = Particle loading (k = N0m/r)
m = Fluid-phase dynamic viscosity
n = Fluid-phase kinematic viscosity
r = Fluid-phase density
s = Fluid-phase electrical

conductivity
t = Dimensionless time (t = v0 t/n)
tp = Velocity relaxation time

tT = Thermal equilibrium time (tT = 3cp

tp Pr/(2c))
y = Dimensionless fluid-phase

temperature (y=(T±T?)/(Tw ± T?))

Subscripts
p = Particle phase
w = Wall
? = Free stream
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Ramamurthy (1987, 1990) has discussed the problem of free convection effects
on the Stokes flow and heat transfer for an infinite vertical plate in a dusty
fluid. Ramamurthy (1990) has considered two situations (when the plate is
started impulsively from rest and when the plate is uniformly accelerated) and
his solutions were obtained by the Laplace transform technique. It is of interest
in the present work to generalize the work of Ramamurthy (1990) to include
wall suction or injection effects and hydromagnetic and fluid heat generation or
absorption effects.

Problem formulation
Consider laminar incompressible flow of an electrically-conducting and heat-
generating or absorbing dusty fluid over a vertical permeable impulsively-
started infinite surface in the presence of a uniformly applied magnetic field.
The surface is maintained at a constant temperature and occupies the plane
x = 0 and the flow of the dusty fluid is in the xy plane. Far from the surface,
both the fluid and the dust particles are in equilibrium and are assumed to be at
rest. The dust or particle-phase volume fraction is assumed to be small and the
suspension is assumed to be dilute in the sense that interparticle collision is
neglected.

Also, all particles are assumed to be spheres of uniform size and density.
The magnetic Reynolds number is assumed to be small so that the induced
magnetic field is neglected. While the fluid phase is assumed to be electrically
conducting, both the particle phase and the surface are assumed to be
electrically non-conducting. In addition, all fluid and particle properties are
assumed to be constant except the fluid density in the body force term of the
fluid-phase momentum equation. By neglecting such effects as the viscous and
Joule dissipations, Hall effect, and the drag work and using the Boussinesq
approximation, the governing equations for this problem can be written as:
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where t stands for time and x and y denote the tangential (vertical) and normal
(horizontal) distances, respectively. u, v, p and T are the fluid-phase x-
component (vertical) of velocity, y-component (horizontal) of velocity, pressure,
and temperature, respectively. r, m, c, K and s are the fluid-phase density,
dynamic viscosity, coefficient of specific heat, thermal conductivity and the
electrical conductivity, respectively. B0, g, and Q0 are the applied magnetic
induction, acceleration due to gravity, and the dimensional heat generation
(> 0) or absorption (< 0) coefficient, respectively. k, N0, m, tp, tT and T? are
the Stokes drag coefficient (= 6pmr for spherical particles of radius r), particle
number density, particle mass, velocity relaxation (or equilibrium) time (= m/
k), thermal equilibrium time�� 3

2
cp

c Pr�p; Pr � �c=K is the Prandtl number)
and the free stream temperature, respectively. The subscript p stands for the
particle phase.

The initial and boundary conditions for this problem can be written as:

u�0; y� � up�0; y� � 0; T�0; y� � Tp�0; y� � T1 �7�

u�t; 0� � U0
2n�1

�n
tn; v�t; 0� � ÿv0; vp�t; 0� � ÿv0; T�t; 0� � Tw

u�t;1� � 0;T�t;1� � T1; Tp�t;1� � T1; t > 0 �8aÿ g�
where U0, n and `̀ n'' are the surface velocity, fluid-phase kinematic viscosity
(m/r) and the wall velocity exponent, respectively. v0 and Tw are the suction
velocity and the wall temperature, respectively.

Equations (1) and (4) subject to Equations (8c) and (8d) are satisfied by

v � vp � ÿv0 �9�
Using this, evaluating Equation (2) at the free stream with up(t,?) = 0,
invoking the Boussinesq approximation and rearranging yield
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where b* is the thermal expansion coefficient.
Following Ramamurthy (1990), it is convenient to employ the following

dimensionless variables:
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in Equations (10), (5), (3), and (6) to respectively give:
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are the dimensionless wall mass transfer coefficient, Grashof number, particle
loading, inverse Stokes number, square of the Hartmann number,
dimensionless heat generation or absorption coefficient and the ratio of specific
heats, respectively.

The dimensionless initial and boundary conditions become:
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Important physical parameters for this flow and heat transfer situation are the
fluid-phase skin-friction coefficient C, and the wall heat transfer coefficient qw.
These are defined, respectively as:
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Results and discussion
Since the solution of the governing equations by the Laplace transform or any
other analytical method is too involved and requires difficult numerical
evaluations, Equations (12) through (15) were solved subject to the initial and
boundary conditions given by Equation (17) by the implicit tridiagonal finite-
difference method discussed by Blottner (1970). All first-order derivatives with
respect to t are first replaced by two-point backward-difference formulae.
Then, three-point central difference quotients are used to discretize all second-
order differential equations in Z while all first-order differential equations in Z
are discretized using the trapezoidal rule. With this, the governing equations
are converted into a set of linear algebraic equations which are then solved by
the well-known Thomas algorithm. The problem is solved line by line at
different t locations. Constant step sizes of 0.01 are used in the t direction while
variable step sizes in the Z direction are employed to accommodate the rapid
changes of the variable in the immediate vicinity of the wall. The initial step
size and growth factor used were ��1 � 0:001 and G = 1.03 such that
��n�1 � G��n. These values were arrived at after many numerical
experiments performed to assess grid-size independence.

The convergence criterion employed was based on the relative difference
between the current and the previous iterations. When this difference reached
10-6, the solution was assumed converged and the iteration process was
terminated. A representative set of numerical results is displayed graphically
in Figures 1-18.

In order to validate the accuracy of the numerical results to be reported
subsequently, comparisons of the fluid-phase skin-friction coefficient and the
wall heat transfer with those reported previously by Ramamurthy (1990) are
performed and the results are given in Tables I and II. It is seen from these
Tables that good agreements between the results exist. The small deviations of
the results of Ramamurthy (1990) in some cases are probably due to the
numerical evaluation of the non-standard functions obtained by his analysis
using the Laplace transform method.

Figures 1-4 present time histories for the profiles of the fluid-phase velocity
F, particle-phase velocity Fp, the fluid-phase temperature y, and the particle-
phase temperature yp, respectively for both conditions of impulsive start of the
surface from rest (n = 0) and uniformly accelerated surface (n = 1). It is seen
from the Figures that the development of the hydrodynamic layers is faster
than the thermal layers of both phases. Also, it is seen that the velocity and
temperature profiles of both phases increase with time for both conditions of
impulsive surface start from rest (n = 0) and uniformly accelerated surface (n =
1) and that the velocities are lower for n = 1 than for n = 0. The temperature
profiles of both phases are unaffected by changes in the values of n since the
temperature fields are uncoupled from the velocity fields, as is obvious from
Equations (14) and (15).

Figures 5-8 illustrate the effects of the particle loading k on the velocity
profiles of the fluid and particle phases F and Fp and the temperature profiles
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for the fluid and particle phases y and yp for the condition of n = 0 and n = 1,
respectively. Increases in the particle loading have the tendency to increase the
drag force and the heat exchange between the phases. This results in
reductions in the flow velocities and temperatures of both phases for aiding
flow (Gr > 0), as is evident in Figures 5-8, and increases in these velocities

Figure 1.
Time history for fluid-
phase velocity profiles

Figure 2.
Time history for
particle-phase velocity
profiles
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for opposing flows (Gr < 0). The reduction in the fluid-phase temperature as
a result of increasing k produces enhancements in the wall heat transfer.

The influence of the Hartmann number Ha on the velocity profiles F and Fp

is shown in Figures 9 and 10, respectively. Application of a magnetic field
normal to the flow direction gives rise to a drag-like force in the direction

Figure 3.
Time history for fluid-

phase temperature

Figure 4.
Time history for

particle-phase
temperature profiles
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opposite to the flow. This force is called the Lorentz force. This resistive force
causes the flow of the fluid phase and, in turn, the particle phase (through the
drag force) along the surface to decrease. This is represented by the decreases
of F and Fp as Ha increases, shown in Figures 9 and 10. It is also evident from
these Figures that while the differences in the velocities of both phases for n = 0
and n = 1 are significant for Ha = 0, they tend to vanish for large values of Ha
(Ha = 4).

Figure 5.
Effects of k on fluid-
phase velocity profiles

Figure 6.
Effects of k on particle-
phase velocity profiles
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Figures 11-14 depict the influence of the wall mass transfer coefficient rv on the
profiles of F, Fp, y, and yp, respectively. Imposition of fluid-phase (and particle-
phase) wall suction (rv > 0) causes both the velocity and temperature layers of
both phases to decrease. Also, the velocity and temperature distributions of
both phases reduce at every point far from the surface. Conversely, fluid-phase
(and particle-phase) injection (rv < 0) at the wall produces the opposite effect,

Figure 7.
Effects of k on fluid-

phase temperture
profiles

Figure 8.
Effects of k on particle-

phase temperature
profiles
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namely an increase in the velocity and temperature distributions as well as in
the hydrodynamic and thermal layers of both phases. Figures 11 and 12 also
show that for rv < 0 distinctive peaks appear in the fluid- and particle-phase
velocity profiles close to the surface and that these peaks tend to shift further
from the surface as rv decreases. These and the previous facts are evident in
Figures 11-14.

Figure 9.
Effects of Ha on fluid-
phase velocity profiles

Figure 10.
Effects of Ha on particle-
phase velocity profiles
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Figures 15-18 display the effects of the fluid-phase heat generation or
absorption coefficient f on the profiles of F, Fp, y, and yp, respectively. Heat
generation (f > 0) causes the temperature of the fluid to increase.
Consequently, and through interphase heat transfer, the particle phase
temperature increases. The enhancement in the fluid-phase temperature
enhances the thermal buoyancy effect which causes higher induced suspension

Figure 11.
Effects of rv on fluid-

phase velocity profiles

Figure 12.
Effects of rv on particle-

phase velocity profiles
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velocities. On the contrary, heat absorption produces the opposite effect
represented by decreases in F, Fp, y, and yp. These facts are clearly seen from
Figures 15-18.

From other results, not shown here for brevity, it is observed that increasing
the Grashof number Gr produces the same effect as increasing f as they both
increase the thermal buoyancy effect. However, increasing the inverse Stokes

Figure 13.
Effects of rv on fluid-
phase temperature
profiles

Figure 14.
Effects of rv on particle-
phase temperture
profiles
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number a increases the interphase coupling between the phases causing the
fluid-phase velocity to decrease and the particle-phase velocity and
temperature to increase. These behaviours are also observed from the non-
shown results.

Tables III-V depict the influences of rv, Ha, f, k and a on the fluid-phase skin
friction coefficient C and the wall heat transfer coefficient qw. It is clearly

Figure 15.
Effects of f on fluid-

phase velocity profiles

Figure 16.
Effects of f on particle-

phase velocity profiles



HFF
10,1

130

Figure 17.
Effects of f on fluid-
phase temperature

Figure 18.
Effects of f on particle-
phase temperature
profiles

Table I.
Comparison of qw and
C values with
Ramamurthy (1990)

t 0.2 0.4 0.6 1.0 2.0

qw Ramamurthy (1990) 1.11490 0.78830 0.64360 0.49860 0.35350
qw Present work 1.14013 0.79812 0.64971 0.50223 0.35467
C Ramamurthy (1990) 0.87200 0.25600 ±0.08530 ± ±
C Present work 0.91186 0.27072 ±0.07671 ±0.51685 ±1.17251

Note: Gr = 2.0, Ha = 0, n = 0, Pr = 0.71, rv = 0, a = 40, g = 0.5, k = 0.2, and f = 0



The Stokes
problem for a

dusty fluid

131

observed from these Tables that the values of both C and qw increase as rv

increases. Also, while the values of C increase significantly as Ha increases, the
values of qw remain unchanged. This is expected since in the absence of
viscous and magnetic dissipations, the energy equations are uncoupled from
the momentum equations in which the magnetic Lorentz force exists. In
addition, as the heat generation or absorption coefficient f increases, the values
of both C and qw decrease. Yet, the effect of f is more pronounced on qw than

Table III.
Values of C and qw for
various rv and t values

rv = ±1.0 rv = 0 rv = 1.0
t 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

C 1.18314 ±0.31601 ±0.76428 1.71051 0.07852 ±0.51685 2.33597 0.78262 0.24530
qw 1.28806 0.38937 0.20602 1.64911 0.71246 0.50223 2.06702 1.16989 0.98636

Note: Gr = 2, Ha = 0, n = 0, Pr = 0.71, a = 40, g = 0.5, k = 0.2, and f = 0.

Table II.
Comparison of C

values with
Ramamurthy (1990)

Gr Pr k Ramamurthy (1990) Present work

2.0 0.71 0 ±0.22030 ±0.21264
2.0 0.71 0.4 0.03180 0.04132

±2.0 0.71 0 1.67700 1.68087
±2.0 0.71 0.4 1.69170 1.70114

2.0 7.0 0 0.24890 0.25565
2.0 7.0 0.4 0.43350 0.44025

±2.0 7.0 0 1.20780 1.21280
±2.0 7.0 0.4 1.29010 1.30237

Note: Ha = 0, n = 0, rv = 0, a = 40, g = 0.5, f = 0, and t = 0.6

Table IV.
Values of C and qw for

various Ha and f
values

f = ±1.0 f = 0 f = 1.0
Ha 0 2 4 0 2 4 0 2 4

C ±0.38495 1.34137 3.59555 ±0.51685 1.26849 3.56458 ±0.70490 1.16306 3.52014
qw 0.89652 0.89652 0.89652 0.50223 0.50223 0.50223 ±0.03513 ±0.03513 ±0.03513

Note: Gr = 2, n = 0, Pr = 0.71, rv = 0, a = 40, g = 0.5, k = 0.2, and t = 0.

Table V.
Values of C and qw for
various k and a values

k = 0 k = 0.4 k = 0.6 k = 0.8
a 40 40 100 1 40 100 1 40 100

C ±0.65543 0.39893 ±0.39835 ±0.35785 ±0.29504 ±0.29465 ±0.27182 ±0.20206 ±0.20248
qw 0.47876 0.52420 0.52383 0.56311 0.54590 0.54553 0.58987 0.56680 0.56662

Note: Gr = 2, Ha = 0, n = 0, Pr = 0.71, rv = 0, g = 0.5, f = 0, and t = 1.0.
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on C. Furthermore, owing the presence of the particles, both the wall heat
transfer and the skin-friction coefficient increase. However, while increasing
the inverse Stokes number a produces higher values of C, it results in
reductions in the wall heat transfer. Finally, as time progresses both C and qw

tend to decrease.

Conclusion
The problem of laminar and heat transfer of a fluid-particle suspension caused
by a suddenly accelerated surface in the presence of buoyancy, magnetic field,
heat generation or absorption, and surface mass transfer was solved
numerically by the finite-difference methodology. Two conditions were
considered. The first was when the surface is impulsively-started from rest and
the second was when the surface is uniformly accelerated. The numerical
results were validated by favorable comparisons with previously reported
solutions. It was found that the presence of the magnetic field caused slowing
of the motion of the suspension. Also, imposition of fluid and particle surface
suction produced lower velocity and temperature distributions of both phases.
The opposite was true when fluid and particles were blown from the surface
into the main flow. In this situation, distinctive peaks in the velocity profiles of
both phases close to the wall were observed. Heat generation was found to
increase the suspension flow due to increases in the thermal buoyancy effects.
In addition, owing to the presence of particles in the suspension, the velocity
distribution of both phases decreased for buoyancy aiding flow and increased
for buoyancy opposing flow. It is hoped the present work will be used as a
vehicle for investigating more generalized two-phase flow models.
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